Interest Pixel Mining

نویسندگان

  • Qi Li
  • Jieping Ye
  • Chandra Kambhamettu
چکیده

Visual media data such as an image is the raw data representation for many important applications, such as image retrieval (Mikolajczyk & Schmid 2001), video classification (Lin & Hauptmann, 2002), facial expression recognition (Wang & Ahuja 2003), face recognition (Zhao, Chellappa, Phillips & Rosenfeld 2003), etc. Reducing the dimensionality of raw visual media data is highly desirable since high dimensionality may severely degrade the effectiveness and the efficiency of retrieval algorithms. To obtain low-dimensional representation of visual media data, we can start by selecting good low-level features, such as colors, textures, and interest pixels (Swain & Ballard 1991; Gevers & Smeulders 1998; Schmid, Mohr & Bauckhage 2000). Pixels of an image may hold different interest strengths according to a specific filtering or convolution technique. The pixels of high interest strengths are expected to be more repeatable and stable than the pixels of low interest strengths across various imaging conditions, such as rotations, lighting conditions, and scaling. Interest pixel mining aims to detect a set of pixels that have the best repeatability across imaging conditions. (An algorithm for interest pixel mining is called a detector.) Interest pixel mining can be formulated into two steps: i) interest strength assignment via a specific filtering technique; and ii) candidate selection. The second step, candidate selection, plays an important role in preventing the output of interest pixels from being jammed in a small number of image regions in order to achieve best repeatability. Based on interest pixels, various image representations can be derived. A straightforward scheme is to represent an image as a collection of local appearances—the intensities of neighboring pixels—of interest pixels (Schmid & Mohr 1997). By ignoring the spatial relationship of interest pixels, this “unstructured” representation requires no image alignment, i.e., free from establishing pixel-to-pixel correspondence among imaging objects by image transformations such as rotation, translation, and scaling. Furthermore, the unstructured representation is very robust with respect to outlier regions in a retrieval application. However, the retrieval cost under unstructured representation is extremely expensive. In the context of face recognition, feature distribution is introduced to capture both global and local information of faces (Li, Ye & Kambhamettu 2006A). A limitation of feature distribution is the assumption of image alignment. A promising trend on interest pixel based representation is to build graph or tree representation for each image and measure the similarity of two images by the edit distance of their graphs or trees (Zhang & Shasha 1989). But as we will see in the later section, this trend is strongly supported by a recently proposed interest pixel mining method (Li, Ye & Kambhamettu 2008).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Object-based/Pixel-based Classification Approach to Detect Geophysical Phenomena

Geophysical phenomena are observable events with spatiotemporal characteristics. These phenomena can have spatial extent and shape but the intensities are generally not homogeneous within this spatial extent. These phenomena also evolve, grow and perish over time. Therefore, developing a robust detection algorithm for geophysical phenomena is difficult and challenging. This paper presents a hyb...

متن کامل

Sub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran

Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Transactions on Machine Learning and Data Mining Editorial

Special issue of “Transactions on Machine Learning and Data Mining” includes three papers spanning a wide spectrum of data mining and machine learning fields. The first paper applies contrasting correlations between databases to detect changes of interest. The second paper uses frequent sequential patterns to extract sets of connected pixels to reveal meaningful patterns in satellite radar imag...

متن کامل

Changes in Croplands as a Result of Large Scale Mining and the Associated Impact on Food Security Studied Using Time-Series Landsat Images

Geographic information systems and satellite remote sensing information are emerging technologies in land-cover change assessment. They now provide an opportunity to gain insights into land-cover change properties through the spatio-temporal data capture over several decades. The time series of Landsat images covering the 1985–2009 period is used here to explore the impacts of surface mining an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009